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The quasi-Zariski topology-graph on the
maximal spectrum of modules over

commutative rings

H. Ansari-Toroghy and Sh. Habibi

Abstract

Let M be a module over a commutative ring and let Max(M) be
the collection of all maximal submodules ofM . We topologizeMax(M)
with quasi-Zariski topology, whereM is a Max-top module. For a subset
T of Max(M), we introduce a new graph G(τ∗mT ), called the quasi-
Zariski topology-graph on the maximal spectrum of M . It helps us to
study algebraic (resp. topological) properties of M (resp. Max(M)) by
using the graphs theoretical tools.

1 Introduction

Throughout this paper R is a commutative ring with a non-zero identity and
M is a unital R-module. By N ≤ M (resp. N < M) we mean that N is a
submodule (resp. proper submodule) M . Also Λ(M) denotes the set of all
non-zero submodules of M . For any pair of submodules N ⊆ L of M and
any element m of M , we denote L/N and the residue class of m modulo N in
M/N by L̄ and m̄, respectively.
For a submodule N of M , the colon ideal of M into N is defined by (N : M) =
{r ∈ R|rM ⊆ N} = Ann(M/N). Further if I is an ideal of R, the submodule
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(N :M I) is defined by {m ∈M : Im ⊆ N}. Moreover, N, Z, and Q denote the
set of positive integers, the ring of integers, and the field of rational numbers.

A prime submodule of M is a submodule P 6= M such that, whenever
re ∈ P for some r ∈ R and e ∈M , we have r ∈ (P : M) or e ∈ P [25].

The prime spectrum (or simply, the spectrum) of M is the set of all prime
submodules of M and denoted by Spec(M). Also, the set of all maximal
submodules of M is denoted by Max(M).

The prime radical
√
N is defined to be the intersection of all prime sub-

modules of M containing N , and in case N is not contained in any prime
submodule,

√
N is defined to be M . Note that the intersection of all prime

submodule M is denoted by rad(M).
For a proper ideal I of R, we recall that the J-radical I, denoted by Jm(I),

is the intersection of all maximal ideals containing I. The J-radical of a sub-
module N of M , denoted by Jm(N), is the intersection of all members of
V m(N). In case that V m(N) = ∅; we define Jm(N) = M .

The quasi-Zariski topology on X := Spec(M) is described as follows: put
V ∗(N) = {P ∈ X : P ⊇ N} and ξ(M) = {V ∗(N) : N is a submodule of M }.
Then there exists a topology τ∗ on X having ξ∗ as the set of closed subsets of
Spec(M) if and only if ξ∗ is closed under the finite union. When this is the
case, τ∗M is called the quasi-Zariski topology on Spec(M) and M is called a
top module [26].

The quasi-Zariski topology on Max(M) does not always exist for any R-
module and if it exists, it is called by Max-top module and this topology
having Z∗m(M) = {V ∗m(N) : N ≤ M} as the set of closed sets of Max(M),
where V ∗m(N) = {Q ∈Max(M) : Q ⊇ N}. We denote this topology by τ∗mM .
In fact τ∗mM is the same as the subspace topology induced by τ∗M on Max(M)
[22].

If Max(M) 6= ∅, the mapping ψ : Max(M) → Max(R/Ann(M)) such
that ψ(Q) = (Q : M)/Ann(M) = (Q : M) for every Q ∈ Max(M), is called
the natural map of Max(M) [14].

A topological space X is said to be connected if there doesn’t exist a pair
U , V of disjoint non-empty open sets of X whose union is X. A topological
space X is irreducible if for any decomposition X = X1 ∪ X2 with closed
subsets Xi of X with i = 1, 2, we have X = X1 or X = X2. A subset X ′ of
X is connected (resp. irreducible) if it is connected (resp. irreducible) as a
subspace of X.

Over the past several years, there has been considerable attention in the
literature to associating graphs with commutative rings (and other algebraic
structures) and studying the interplay between ring-theoretic and graph-theore
tic properties; see the recent survey articles [1, 24]. The zero-divisor graph
of R, Γ(R), is a graph with the vertex set Z(R) \ {0}, the set of nonzero
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zero-divisors of R, and two distinct vertices x and y are adjacent if and only
if xy = 0. The concept of the zero-divisor graph was first introduced by Beck
(see [17]), who let all the elements of R be vertices and was mainly interested
in colorings. However, the emphasis on the interplay between ring-theoretic
properties of R and graph-theoretic properties of Γ(R) are from Anderson and
Livingston (1999) (see [6]). For a recent article on a related graph to the
zero-divisor graph (see annihilator graph as in [15]). Since most properties of
a ring are closely tied to the behavior of its ideals, it is worthy to replace the
vertices of the zero-divisor graph by the non-zero annihilators ideals. The idea
of a graph that whose vertices are a subset of ideals of a ring, was introduced
recently in [20]. They defined AG(R), the annihilating-ideal graph of R, to be
a graph whose vertices are ideals of R with non-zero annihilators and in which
two vertices I and J are adjacent if and only if IJ = 0. For other related
graphs, we recommend [2, 3, 4, 5, 16].

Let N and L be submodules of M . Then the product of N and L is defined
by (N : M)(L : M)M and denoted by NL. Clearly Nk = (N : M)kM (see
[8]).

In [9, 10], the present authors generalized the above idea and introduced
the annihilating-submodule graph AG(M) and investigated some of its re-
lated properties. The (undirected) graph AG(M) is a graph with vertices
V (AG(M))= {N ≤M : there exists a non-zero proper submodule L of M with
NL = 0 }, where distinct vertices N,L are adjacent if and only if NL = 0.

As we know, the closed subset V ∗m(N), where N is a submodule of M ,
plays an important role in the quasi-Zariski topology on Max(M). Our main
purpose in this article is to employ these sets and define a new graph G(τ∗mT ),
called the quasi-Zariski topology-graph on the maximal spectrum of M. By
using this graph, we study algebraic (resp. topological) properties of M
(resp. Max(M)). Further we investigate the relationship between G(τ∗mT )
and AG(M/=(T )), where T denotes a non-empty subset of Max(M) and
=(T ) is the intersection of all members of T .

G(τ∗mT ) is an undirected graph with vertices V (G(τ∗mT ))= {N < M : there
exists K < M such that V ∗m(N)∪V ∗m(K) = T and V ∗m(N), V ∗m(K) 6= T},
where T is a non-empty subset of Max(M) and distinct vertices N and L are
adjacent if and only if V ∗m(N) ∪ V ∗m(L) = T (see Definition 2.1).

Let M be a Max-top module. In section two of this article, among other
results, it is shown that the quasi-Zariski topology-graph G(τ∗mT ) is con-
nected and diam(G(τ∗mT )) ≤ 3. Further if G(τ∗mT ) contains a cycle, then
gr(G(τ∗mT )) ≤ 4 (see Theorem 2.8). Also, it is shown that G(τ∗mT ) has a
bipartite subgraph (see Theorem 2.15).

The section three, reflects some fundamental properties of the annihilating-
submodule graph of a module which will be used in this paper.
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In section four, the relationship between G(τ∗mT ) and AG(M/=(T )) is in-
vestigated. We show that if N and L are non-zero proper submodules of M
which are adjacent in G(τ∗T ), then Jm(N)/=(T ) and Jm(L)/=(T ) are adja-
cent in AG(M/=(T )) (see Proposition 4.5). Further it is proved that if M
is a fully semiprime module, then G(τ∗mT ) is isomorphic with a subgraph of
AG(M/=(T )) (see Theorem 4.6).

Let us introduce some graphical notions and denotations that are used in
what follows: A graph G is an ordered triple (V (G), E(G), ψG) consisting of a
non-empty set of vertices V (G), a set E(G) of edges, and an incident function
ψG that associates an unordered pair of distinct vertices with each edge. The
edge e joins x and y if ψG(e) = {x, y}, and we say x and y are adjacent. The
degree dG(x) of a vertex x is the number of edges incident with x. A path
in graph G is a finite sequence of vertices {x0, x1, . . . , xn}, where xi−1 and xi
are adjacent for each 1 ≤ i ≤ n and we denote xi−1 − xi for existing an edge
between xi−1 and xi. The number of edges crossed to get from x to y in a
path is called the length of the path. A graph G is connected if a path exists
between any two distinct vertices. For distinct vertices x and y of G, let d(x, y)
be the length of the shortest path from x to y and if there is no such path
d(x, y) =∞. The diameter of G is diam(G) = sup{d(x, y) : x, y ∈ V (G)}. The
girth of G, denoted by gr(G), is the length of a shortest cycle in G (gr(G) =∞
if G contains no cycle)(see [6]).

A graph H is a subgraph of G if V (H) ⊆ V (G), E(H) ⊆ E(G) and ψH is
the restriction of ψG to E(H). We denote the complete graph on n vertices
by Kn. A bipartite graph is a graph whose vertices can be divided into two
disjoint sets U and V such that every edge connects a vertex in U to one in
V ; that is, U and V are each independent sets and complete bipartite graph
on n and m vertices, denoted by Kn,m, where V and U are of size n and m,
respectively, and E(G) connects every vertex in V with all vertices in U (see
[28]).

In the rest of this article, M denotes a Max-top module, T a non-empty
subset of Max(M), =(T ) is the intersection of all members of T , M̂ represents
the R-module M/=(T ), and for a submodule N of M , N̂ = N/=(T ), where
=(T ) ⊆ N .

2 The qausi-Zariski topology-graph on the maximal spec-
trum of a module

Definition 2.1. We define G(τ∗mT ), the quasi-Zariski topology-graph on the
maximal spectrum of M with vertices V (G(τ∗mT ))= {N < M : there exists
K < M such that V ∗m(N)∪V ∗m(K) = T and V ∗m(N), V ∗m(K) 6= T}, where
distinct vertices N and L are adjacent if and only if V ∗m(N) ∪ V ∗m(L) = T .
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Remark 2.2. If M is a Max-top module and N and L are submodules of M ,
then by [26, Lemma 2.1] and since V ∗m(N) = Max(M) ∩ V ∗(N), we have
V ∗m(N) ∪ V ∗m(L) = V ∗m(Jm(N)) ∪ V ∗m(Jm(L)) = V ∗m(Jm(N) ∩ Jm(L)).

Proposition 2.3. The following statements hold.
(a) G(τ∗mT ) 6= ∅ if and only if T is closed and is not irreducible subset of

Max(M).
(b) G(τ∗mT ) 6= ∅ if and only if T = V ∗m(=(T )) and T is not irreducible

subset of Max(M).
(c) If T = V ∗m(=(T )) and =(T ) is not a J-radical prime submodule of M,

then G(τ∗mT ) 6= ∅.

Proof. (a) Straightforward.
(b) Suppose that G(τ∗mT ) 6= ∅. By part (a), it is enough to show that

T = V ∗m(=(T )). Clearly, T ⊆ V ∗m(=(T )). Next, let V ∗m(N) be any closed
subset of Max(M) containing T . Then m ⊆ N for every m ∈ T so that
=(T ) ⊇ N . Hence, for every Q ∈ V ∗m(=(T )), Q ⊇ =(T ) ⊇ N , namely
V ∗m(=(T )) ⊆ V ∗m(N). It follows that V ∗m(=(T )) is the smallest closed
subset of Max(M) containing T , hence, V ∗m(=(T )) = T .

(c) Suppose that T = V ∗m(=(T )) and =(T ) is not a prime submodule
of M. We show that T is not irreducible subset of Max(M). Assume that
T is irreducible subset of Max(M). Let IK ⊆ =(T ). One can easily check
that T ⊆ V ∗m(IK) ⊆ V ∗m(K) ∪ V ∗m(IM). Since T is irreducible, either
T ⊆ V ∗m(K) or T ⊆ V ∗m(IM). If T ⊆ V ∗m(K), then K ⊆ P , for all
P ∈ T , i.e., K ⊆ =(T ). If T ⊆ V ∗m(IM), then IM ⊆ P , for all P ∈ T , i.e.,
IM ⊆ =(T ). Thus =(T ) is a prime submodule of M .

Remark 2.4. We have not been able to find an example to show that the
converse of part (c) is not true. This motivates the following question.

Question 2.5. Is =(T ) not a J-radical prime submodule of M, whenG(τ∗mT ) 6=
∅.

Example 2.6. Put R := Z and M := ⊕i∈NZ/piZ. Then by [13, Table of
examples 3.1], Max(M) = Spec(M) = {pjM} = {⊕i∈N,i6=jZ/piZ} and M
is a Max-top module. Let T := Max(M). Now V ∗m(=(T )) = V ∗m((0)) =
Max(M). Hence G(τ∗mMax(M)) 6= ∅.

Example 2.7. Set R := Z and M := Q ⊕ (⊕i∈NZ/piZ). Then by [13, Table
of examples 3.1], Max(M) = {Q⊕ (⊕i∈N,i6=jZ/piZ)}, Spec(M) = Max(M)∪
{(0)⊕ (⊕i∈NZ/piZ)}, and M is a Max-top module. Let T := Max(M). Now
V ∗m(Q⊕ (0)) = Max(M) so that G(τ∗mT ) 6= ∅.

The following theorem illustrate some graphical parameters.
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Theorem 2.8. The quasi-Zariski topology-graph G(τ∗mT ) is connected and
diam(G(τ∗mT )) ≤ 3. Moreover if G(τ∗mT ) contains a cycle, then gr(G(τ∗mT )) ≤
4.

Proof. SupposeN,K ∈ V (G(τ∗mT )) and they are not adjacent. Then V ∗m(N)∪
V ∗m(K) 6= T , so there exist L, V ∈ V (G(τ∗mT )) with

V ∗m(Jm(N) ∩ Jm(L)) = V ∗m(Jm(K) ∩ Jm(V )) = T.

If L = V , then N −L−K is a path of length 2. Thus we assume that L 6= V .
If V ∗m(Jm(V ) ∩ Jm(V )) = T , then N − L − V −K is a path of length 3. If
V ∗m(Jm(L)∩Jm(V )) 6= T ), then N −Jm(L)∩Jm(V )−K is a path of length
of 2 (if N = Jm(L) ∩ Jm(V ), then

V ∗m(N) ∪ V ∗m(K) = V ∗m(L) ∪ V ∗m(V ) ∪ V ∗m(K)

so that

T = V ∗m(Jm(V ) ∩ Jm(K)) = V ∗m(Jm(L) ∩ Jm(V ) ∩ Jm(K)).

Thus V ∗m(Jm(N)) ∩ V ∗m(Jm(K)) = T , a contradiction. Similarly, we have
K 6= Jm(L)∩ Jm(V )). Now suppose that gr(G(τ∗mT )) > 4. Then without loss
of generality, we can assume that gr(G(τ∗mT )) = 5. Then N−L−K−V −W−N
is a 5-cycle. Clearly, V ∗m(L)∪ V ∗m(V ) 6= T (resp. V ∗m(K)∪ V ∗m(W ) 6= T ).
Now one can see that N −Jm(L)∩V ∗m(V )−W −N (resp. N −L−Jm(K)∩
Jm(W )−N) is a 4-cycle, a contradiction. So we have gr(G(τ∗mT )) ≤ 4. Hence,
the proof is completed.

Proposition 2.9. LetM be anR-module and ψ : Max(M)→Max(R/Ann(M))
be the natural map. Suppose Max(M) is homeomorphic to Max(R/Ann(M))
under ψ. Let (N : M)M and (L : M)M be adjacent in G(τ∗mT ) and let

T ′ = {(Q : M) : Q ∈ T}. Then (N : M) and (L : M) are adjacent in G(τ∗mT ′ ).
Conversely, if I and J are adjacent in G(τ∗mT ′ ), then IM and JM are adjacent
in G(τ∗mT ).

Proof. Since ψ is Max-injective, ψ−1(T ′) = T . Also we have V ∗m((N :
M)M) ∪ V ∗m((L : M)M) = T . Hence ψ(V ∗m((N : M)M)) ∪ ψ(V ∗m((L :
M)M)) = T ′. This implies that V (N : M) ∪ V (L : M) = T ′ (note that
V ∗m((N : M)M) = T ⇐⇒ V (N : M) = T ′). Conversely, suppose V (I) ∪
V (J) = T ′. Then ψ−1(V (I))∪ψ−1(V (J)) = T so that V ∗m(IM)∪V ∗m(JM) =
T (note that V ∗m(I) = T ′ ⇔ V ∗m(IM) = T ).

Lemma 2.10. Let G(τ∗mT ) 6= ∅ and let Q ∈ T . Then Q is a vertex if each of
the following statements holds.
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(a) There exists a subset T ′ of T such that Q ∈ T ′, V (∩P∈T ′P ) = T , and
V (∩P∈T ′,P 6=QP ) 6= T . In particular, this holds when T is a finite set.

(b) For a submoduleN ofM , N ∈ V (G(τ∗mT )) and Jm(N)∩Q /∈ V (G(τ∗mT )).

Proof. Straightforward.

Example 2.11. Consider Example 2.7, if |T | ≥ 2 and T ⊆ {Q⊕(⊕i∈N,i6=1Z/piZ)
, ...,Q⊕ (⊕i∈N,i6=nZ/piZ)}, then every element of T is a vertex.

Definition 2.12. We define a subgraph Gd(τ
∗m
T ) of G(τ∗mT ) with vertices

V ((Gd(τ
∗m
T )))= {N < M : there exists L < M such that V ∗m(N)∪V ∗m(L) =

T and V ∗m(N), V ∗m(L) 6= T and V ∗m(N) ∩ V ∗m(L) = ∅}, where distinct
vertices N and L are adjacent if and only if V ∗m(N) ∪ V ∗m(L) = T and
V ∗m(N)∩V ∗m(L) = ∅. It is clear that the degree of every N ∈ V ((Gd(τ

∗m
T )))

is the number of submodules K of M such that V ∗m(L) = V ∗m(K), where L
is adjacent to N .

We need the following remark.

Remark 2.13. We recall that the Zariski topology onMax(M) is the topology
τmM described by taking the set Zm(M) = {V (N) : N ≤M} as the set of closed
sets of Max(M), where V (N) = {P ∈ Spec(M) : (P : M) ⊇ (N : M)} [23]. If
M is a multiplication module then τM = τ∗mM by [26, Theorem 3.5].

Proposition 2.14. The following statements hold when T is a closed subset
of Max(M).

(a) Gd(τ
∗m
T ) 6= ∅ if and only if T = V ∗m(=(T )) and T is disconnected.

(b) Suppose M̂ is an Artinian module and Spec(M̂) = Max(M̂). Then
Gd(τ

∗m
T ) = ∅ if and only if R/Ann(M̂) contains no idempotent other than 0̄

and 1̄.

Proof. (a) is straightforward.
(b) Since M̂ is an Artinian module, then M̂/rad(M̂) is a Noetherian mod-

ule by [18, Corollary 2.30]. As M̂/rad(M̂) is a finitely generated top module, it
is a multiplication module by [26, Theorem 3.5]. It follows that τM̂/rad(M̂) =

τ∗m
M̂/rad(M̂)

by Remark 2.13. So τM̂ = τ∗m
M̂

because M̂ and M̂/rad(M̂) are

homeomorphic by Lemma 4.1. Also the natural map of M̂/rad(M̂) is surjec-
tive (for, M̂/rad(M̂) is finitely generated). Hence the natural map of M̂ is
surjective by the above arguments. Now the result follows from [23, Corollary
3.8].

Theorem 2.15. Gd(τ
∗m
T ) is a bipartite graph.
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Proof. At first we assume that Gd(τ
∗m
T ) contains a cycle, we show that

gr(Gd(τ
∗m
T )) ≤ 4. Without loss of generality, we assume that gr(G(τT )) = 5.

Then N − L − K −W − V − N is a 5-cycle. It follows that N and W are
adjacent so that N−L−K−W−N is a 4-cycle, a contradiction. Now, by [28],
G is a bipartite graph if and only if it does not contain an odd cycle. Hence
by Theorem ??, it is enough to show that Gd(τT ) 6= 3. Suppose N − L −
K −N is a 3-cycle. Then ∅ = (V ∗m(N) ∩ V ∗m(L)) ∪ (V ∗m(N) ∩ V ∗m(K)) =
V ∗m(N) ∩ (V ∗m(L) ∪ V ∗m(K)) = V ∗m(N) ∩ T = V ∗m(N). Hence V (N) = ∅,
a contradiction.

Corollary 2.16. By Theorem 2.15, if Gd(τ
∗m
T ) contains a cycle, then

gr(Gd(τ
∗m
T )) = 4.

Example 2.17. Set R := Z and M := Z/12Z. So Spec(M) = Max(M) =
{2Z/12Z, 3Z/12Z}. Set T := Max(M). Clearly, G(τ∗mT ) = Gd(τ

∗m
T ) is a

bipartite graph and Z/(∩P∈TP : M) ∼= Z/6Z contains idempotents other
than 0 and 1.

Example 2.18. Set R := Z and M := Z/30Z. So Spec(M) = Max(M) =
{2Z/30Z, 3Z/30Z, 5Z/30Z}. Set T := Max(M). Clearly, Gd(τ

∗m
T ) is a bipar-

tite graph and Z/(∩P∈TP : M) ∼= Z/30Z contains idempotents other than 0
and 1.

The above example shows that Gd(τ
∗m
T ) is not always connected.

Proposition 2.19. The following statements hold.
(a) Gd(τ

∗m
T ) with two parts U and V is a complete bipartite graph if and

only if for every N,L ∈ U (resp. in V), V ∗m(N) = V ∗m(L).
(b) Gd(τ

∗m
T ) is connected if and only if it is a complete bipartite graph.

Proof. Use the fact that if N,L are two vertices, then d(N,L) = 2 if and only
if V ∗m(N) = V ∗m(L).

We end this section with the following question.

Question 2.20. Let G(τ∗mT ) 6= ∅, where T be an infinite subset of Max(M).
Is T ∩ V (G(τ∗mT )) 6= ∅?

3 The Annihilating-submodule graph

As we mentioned before, AG(M) is a graph with vertices V (AG(M)) = {N ≤
M : NL = 0 for some 0 6= L < M}, where distinct vertices N and L are
adjacent if and only if NL = 0 (here we recall that the product of N and L is
defined by (N : M)(L : M)M).
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The following results reflect some basic properties of the annihilating-
submodule graph of a module.

Proposition A ([5, Proposition 3.2]). Let N be a non-zero proper submodule
of M .

(a) N is a vertex in AG(M) if Ann(N) 6= Ann(M) or (0 :M (N : M)) 6= 0.

(b) N is a vertex in AG(M), where M is a multiplication module, if and
only if (0 :M (N : M)) 6= 0.

Remark 3.1. In the annihilating-submodule graph AG(M), M itself can be
a vertex. In fact M is a vertex if and only if every non-zero submodule is a
vertex if and only if there exists a non-zero proper submodule N of M such
that (N : M) = Ann(M). For example, when M = Q, then for every submod-
ule N of M (as Z-module), (N : M) = 0. Hence M is a vertex in AG(M).

Theorem B ([5, Theorem 3.3]). Assume that M is not a vertex. Then the
following hold.

(a) AG(M) is empty if and only if M is a prime module.

(b) A non-zero submodule N of M is a vertex if and only if (0 :M (N :
M)) 6= 0.

Theorem C ([5, Theorem 3.4]). The annihilating-submodule graph AG(M)
is connected and diam(AG(M)) ≤ 3. Moreover, if AG(M) contains a cycle,
then gr(AG(M)) ≤ 4.

Proposition D ([5, Proposition 3.4]). The following statements hold.

(a) Let M be a non-simple semisimple R-module. Then every non-zero
proper submodule M is a vertex.

(b) LetM be a non-simple homogeneous semisimpleR-module. ThenAG(M)
= Kα.

(c) Let M be a prime module with a non-zero socle. Then AG(M) = ∅ or
AG(M) = Kα.

(d) Let M be a non-simple module with a non-zero socle. Then AG(M) 6= ∅.
In particular, AG(M) 6= ∅ when M is a non-simple Artinian module.
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Theorem E ([5, Theorem 3.7]). Consider the following statements.
(a) Ann(M) is a prime ideal and M is a divisible R/Ann(M)-module.
(b) Every non-zero proper submodule of M is adjacent to M .
(c) For each ideal I of R, we have IM = M or IM = 0.
(d) AG(M) = Kα.
(e) M is a homogeneous semisimple module.
Then (a) −→ (b) −→ (c) −→ (d) −→ (a). Moreover, if M is a finitely

generated module then (e)←→ (a)

4 The relationship between G(τ ∗mT ) and AG(M)

A submodule S of an R-module M will be called semi maximal if S is an
intersection of maximal submodules. Further M is called a semi maximal
module if (0) ⊆ M is a semi maximal submodule. A proper submodule N of
M is said to be semiprime in M , if for every ideal I of R and every submodule
K of M , I2K ⊆ N implies that IK ⊆ N . Further M is called a semiprime
module if (0) ⊆ M is a semiprime submodule. Every intersection of prime
submodules is a semiprime submodule. A proper ideal I of R is semiprime if
for every ideal J and K of R, J2K ⊆ I implies that JK ⊆ I [29].

Lemma 4.1. Suppose T is a closed subset of Max(M) equipped with the
natural topology induced from of Max(M). Then T and Max(M̂) are home-
omorphic.

Proof. Let φ : Max(M̂) → T = V ∗m(=(T )) defined by φ(Q̂) = Q, where
Q ∈ Max(M). Clearly φ is a bijection map. We show that φ is a continuous
map. Let U = T ∩ V ∗m(N) be a closed subset of T , where N is a proper

subset of M . Then we have φ−1(U) = V ∗m( ̂N + =(T )). We show that φ is
closed. Suppose U is a closed subset of Max(M̂). Then U = V ∗m(N̂), where
N ≤M . It is easy to see that φ(U) = V ∗m(N).

One may think that since T and Max(M̂) are homeomorphic, the studying
G(τ∗mT ) can be reduced to studying G(τ∗mMax(L)), where L is a semi maximal
module. But the following example shows that this is not true.

Example 4.2. SetR := Z, M := Z/12Z, and T := Max(M). ThenG(τ∗mT ) =
K1,2 but G(τ∗mMax(M/Jm((0)))) = K2.

Remark 4.3. In factG(τ∗mT ) is a non-empty graph if and only if |E(G(τ∗mT ))| ≥
1. The following lemma shows that the graph AG(M) has also this property
(i.e., |E(AG(M))| ≥ 1) if M is a semiprime module such that it is not a vertex
in AG(M).
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Lemma 4.4. Assume that M is not a vertex in AG(M). Then M is a
semiprime module if and only if for every non-zero submodule N of M and
positive integer number k, Nk 6= 0.

Proof. The necessity is clear. To see the converse, let N be a submodule of
M and let I be an ideal of R. Let I2N = 0 and IN 6= 0. Then we have
(IN)2 = (IN : M)2M ⊆ I2N = 0, a contradiction. Hence M is a semiprime
module.

Proposition 4.5. The following statements hold.

(a) Suppose N and L are adjacent in G(τ∗mT ). Then ˆJm(N) and ˆJm(L)

are adjacent in AG(M̂).
(b) G(τ∗mT ) is isomorphic with a subgraph of AG(M̂) or |E(G(τ∗mT ))| ≥ 2.

Proof. (a) Straightforward.
(b) Assume that G(τ∗mT ) is not isomorphic with a subgraph of AG(M̂).

Hence there exist N,L ∈ V (G(τ∗mT )) such that N and L are adjacent and
N 6= Jm(N). It follows that N − L− Jm(N) is a path of length two.

Note that an R-module M is fully prime (respectively fully semiprime)
if each proper submodule of M is prime (respectively semiprime). In [19,
Corollary 1.9], it is shown that M is fully prime (respectively fully semiprime)
if and only if is homogeneous semisimple (respectively co-semisimple module).

Theorem 4.6. The following statements hold.
(a) Let M be a fully semiprime module. Then G(τ∗mT ) is isomorphic with

a subgraph of AG(M̂).
(b) Let M be a semisimple module and suppose M is not a vertex in

AG(M). Then G(τ∗mT ) and AG(M̂) are isomorphic.
(c) LetM be a homogeneous semisimple module and Spec(M) = Max(M).

Then AG(M̂) = Kα, where α = |Λ(M̂)| and G(τ∗mT ) = ∅.

Proof. (a) By [19, Theorem 2.3], M is a co-semisimple module. So N =
∩P∈V ∗m(N)P , where N < M . Hence, by Proposition 4.5 (a), it is easy to see

that G(τ∗mT ) is isomorphic with a subgraph of AG(M̂).
(b) Let M be a semisimple module and suppose M is not a vertex in

AG(M). We show that M is a multiplication module. To see this, let N be
a proper submodule of M . Then there exists a family {Ti, i ∈ I} of minimal
submodules of M such that N = ⊕i∈ITi. Now for each i ∈ I, we have
(Ti : M)M = M (note that (Ti : M)M 6= 0 because M is not a vertex in
AG(M)). Hence N = ⊕i∈I(Ti : M)M = (⊕i∈I(Ti : M))M . Thus M is a
multiplication module. It follows that if N̂ and L̂ are adjacent in AG(M̂),
then N and L are adjacent in G(τ∗T ). Since M is a co-semisimple module, by
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using part (b), we see that G(τ∗mT ) is isomorphic with a subgraph of AG(M̂).

Hence G(τ∗mT ) and AG(M̂) are isomorphic.
(c) The first assertion follows from Proposition D. To see the second asser-

tion, since =(T ) is a prime submodule of M (see [19, Corollary 1.9]), we have
G(τ∗mT ) = ∅ by Proposition 2.3 (c).

Example 4.7. Put R := Z and M := ⊕i∈NZ/piZ. Then by [13, Table of
examples 3.1], Max(M) = Spec(M) = {pjM} = {⊕i∈N,i6=jZ/piZ} and M
is a top module. G(τ∗mMax(M)) is an infinite graph, because every element

⊕i∈N,i6=jZ/piZ of Max(M) is adjacent to Z/pjZ. Hence by Theorem 4.6 (b),
AG(M) is an infinite graph.

Lemma 4.8. Assume that ∅ 6= V (AG(M̂) ⊆ Max(M̂). Then |T | = 2,
AG(M̂) = K2 and it is isomorphic with a subgraph of G(τ∗mT ).

Proof. Suppose that P̂ is a vertex in AG(M̂) such that P ∈ Max(M). Then
there exists non-zero proper submodule Q̂ of M̂ such that it is adjacent to P̂ ,
where, Q ∈ Max(M). One can see that (P : M) ⊆ (P ′ : M) or (Q : M) ⊆
(P ′ : M) for every P ′ ∈ T . Now since M̂ is a top module, by [26, Theorem
3.5] P = P ′ or Q = P ′. Hence V ∗m(P )∪V ∗m(Q) = T . It follows that |T | = 2,
AG(M̂) has only one edge and it is isomorphic with a subgraph of G(τ∗mT ).

Proposition 4.9. Assume that G(τ∗mT ) 6= ∅.
(a) If M̂ is a Noetherian R-module, then T = V ∗m(P1 ∩ ... ∩ Pn).
(b) If M̂ is an Artinian top R-module, then T = V ∗m(P1 ∩ ...∩Pn), where

for each (1 ≤ i ≤ n), Pi is a vertex. In particular, |T | = n.

Proof. (a) Since M̂ is a Noetherian module, M̂ has a finite number of minimal
prime submodules by [27, Theorem 4.2]. Hence M̂ = V ∗m(P̂1)∪ ...∪V ∗m(P̂n),
where each i (1 ≤ i ≤ n), P̂i is a minimal prime submodule of M̂ and Pi is
a prime submodule of M . So by Lemma 4.1, we have T = V ∗m(P1) ∪ ... ∪
V ∗m(Pn).

(b) As in the proof of Proposition 2.14 (b), M̂/rad(M̂) is a Noetherian
module. So M̂/rad(M̂) has a finite number of minimal prime submodules.
Hence M̂ has a finite number of minimal prime submodules. So we have T =
V ∗m(P1)∪ ...∪V ∗m(Pn) by part (a). To see the second assertion, we note that
since M̂/rad(M̂) is a finitely generated top module, it is a multiplication mod-
ule by [26, Theorem 3.5]. It follows that M̂/rad(M̂) is a cyclic Artinian module
by [21, Corollary 2.9] and hence Spec(M̂/rad(M̂)) = Max(M̂/rad(M̂)). So
Spec(M̂) = Max(M̂). Hence by the above arguments, we have |T | = n and
the proof is completed.
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